Knowledge-Driven Network for Object Detection
نویسندگان
چکیده
Object detection is a challenging computer vision task with numerous real-world applications. In recent years, the concept of object relationship model has become helpful for and been verified realized in deep learning. Nonetheless, most approaches to modeling relations are limited using anchor-based algorithms; they cannot be directly migrated anchor-free frameworks. The reason that algorithms used eliminate complex design anchors predict heatmaps represent locations keypoints different categories, without considering between keypoints. Therefore, better fuse information heatmap channels, it important visual this paper, we present knowledge-driven network (KDNet)—a new architecture can aggregate keypoint augment features detection. Specifically, processes set simultaneously through interactions their local geometric features, thereby allowing relationship. Finally, updated were obtain corners objects determine positions. experimental results conducted on RIDER dataset confirm effectiveness proposed KDNet, which significantly outperformed other state-of-the-art methods.
منابع مشابه
Convolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولTransferring Common-Sense Knowledge for Object Detection
We propose the idea of transferring common-sense knowledge from source categories to target categories for scalable object detection. In our setting, the training data for the source categories have bounding box annotations, while those for the target categories only have image-level annotations. Current state-of-the-art approaches focus on image-level visual or semantic similarity to adapt a d...
متن کاملObject Detection Meets Knowledge Graphs
Object detection in images is a crucial task in computer vision, with important applications ranging from security surveillance to autonomous vehicles. Existing state-of-the-art algorithms, including deep neural networks, only focus on utilizing features within an image itself, largely neglecting the vast amount of background knowledge about the real world. In this paper, we propose a novel fra...
متن کاملA MultiPath Network for Object Detection
The recent COCO object detection dataset presents several new challenges for object detection. In particular, it contains objects at a broad range of scales, less prototypical images, and requires more precise localization. To address these challenges, we test three modifications to the standard Fast R-CNN object detector: (1) skip connections that give the detector access to features at multip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algorithms
سال: 2021
ISSN: ['1999-4893']
DOI: https://doi.org/10.3390/a14070195